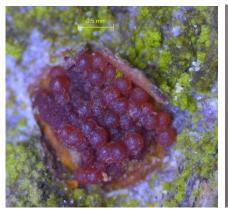
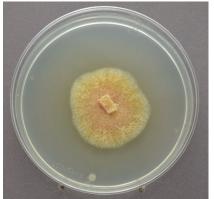
Folgen der Hitze- und Dürrejahre 2018-2022 in unseren Wäldern – Buchen-Vitalitätsschwäche und Rußrindenerkrankung

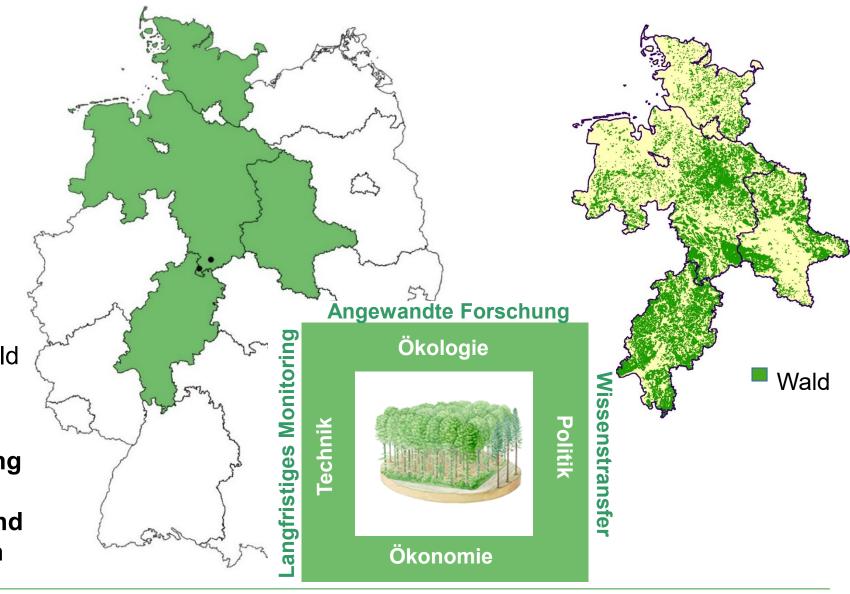
Gitta Jutta Langer

Nordwestdeutsche Forstliche Versuchsanstalt (NW-FVA), Abteilung Waldschutz, Sachgebiet Mykologie und Komplexerkrankungen

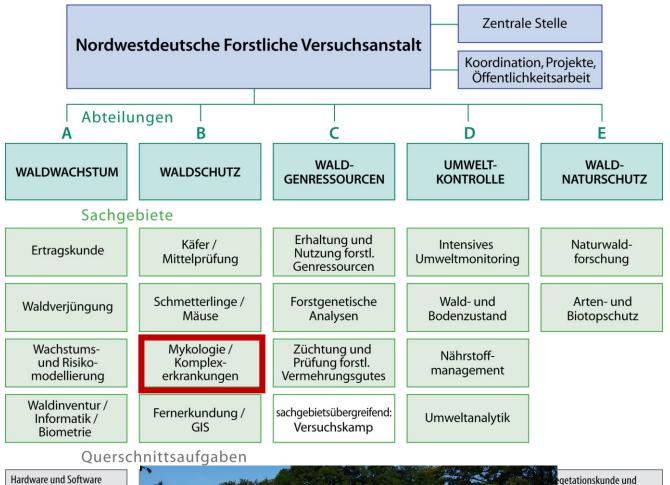
Gliederung


- 1. Einleitung NW-FVA
- 2. Haupttreiber für Erkrankungen der Waldbäume
- 3. Klima Witterung als auslösende Faktoren für Erkrankungen
- 4. Buchen-Vitalitätsschwäche
- 5. Rußrindenerkrankung des Ahorns
- 6. Ausblick und Fazit





1. Einleitung – Nordwestdeutsche Forstliche Versuchsanstalt (NW-FVA)


Gründung 2006

- NW-FVA ist eine gemeinsame Forschungseinrichtung und Dienststelle der Länder Schleswig-Holstein, Niedersachsen, Hessen und Sachsen-Anhalt auf der Rechtsgrundlage eines Staatsvertrags
- Zuständig für 2,7 Mio. Hektar Wald (Deutschland 11,4 Mio. Hektar Wald)
- praxisnahe forstliche Forschung Beratung der Waldbesitzer, Forstbetriebe, Verwaltungen und Politik in den beteiligten Ländern

Wachstumskundliche Aufnahmen und Versuchsflächensteuerung

Ökonomische Bewertungen

Biometrische und statistische Beratungen

Wissenstransfer neue Medien

Abteilung Waldschutz

- Diagnose und Verhinderung von Schäden an Wäldern
- Entwicklung integrierter
 Waldschutzkonzepte
- Beratung von
 Waldbesitzenden,
 Forstbetrieben, Politik,
- Angewandte Forstliche Forschung
- Mittelprüfung

Sachgebiet Mykologie und Komplexerkrankungen

Arbeitsschwerpunkte:

- Beratung von Waldbesitzern, Forstbetrieben, Politik,
- Schaddiagnose an eingesandtem Probematerial / Mykologisches Labor / Molekularbiologisches Labor
- Wissenstransfer in die Forstliche Praxis

Aktuell:

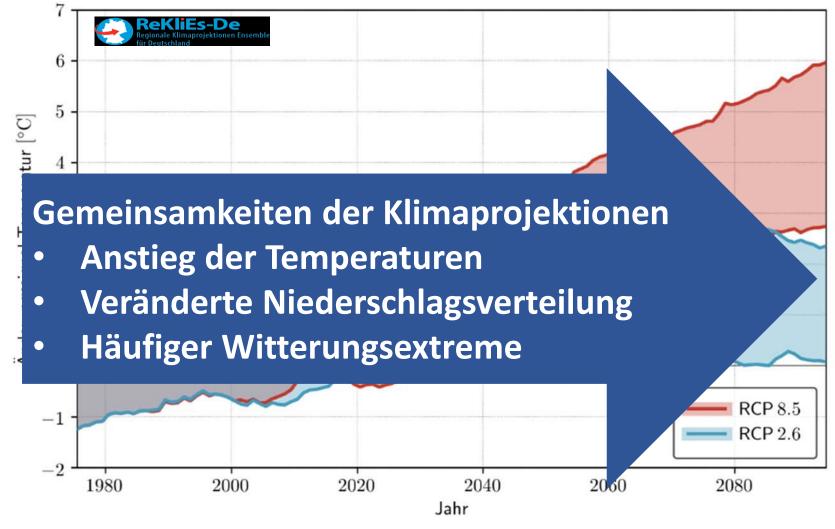
- Eschentriebsterben (FraxPath), Trockenheitsrisiken (TroWak),
 Vitalität von Waldbäumen im Klimawandel (VitaWald),
 - Schäden an Douglasie (VITADOU), Rußrinde (RuRI), Buchen-Vitalitätsschwäche (Buche-Akut)
- · Diplodia-Triebsterben an Koniferen
- Komplexe Erkrankungen bei Buche, Eiche und Tanne
- Quarantäne-Schadorganismen, invasive
 Arten und Einsatz pilzlicher Antagonisten

2. Haupttreiber für Erkrankungen der Waldbäume

7 Haupttreiber für (pilzliche) Erkrankungen bei Waldbäumen (verändert nach Ghelardini et al. 2016)

- Klimawandel und Globalisierung
- Invasive, fremde Arten
- Auftreten neuer virulenter/ aggressiver Stämme oder Arten
- Entstehen von Hybriden
- Latente und kryptische Arten
- Entstehen neuer Assoziationen von Pathogenen und Vektoren
- Anbau und Einführung neuer Forstbaumarten und Veränderung des forstlichen Managements

Pechkrebs der Kiefer (Fusarium circinatum)


Erlen-Phytophthora o. Ulmensterben Kiefern- / **Diplodia-Triebsterben**(Diplodia sapinea)

Ulmensterben - Ulmensplintkäfer (Ceratocystis ulmi / novo-ulmi)

Klimawandel - größte Herausforderung der Gegenwart

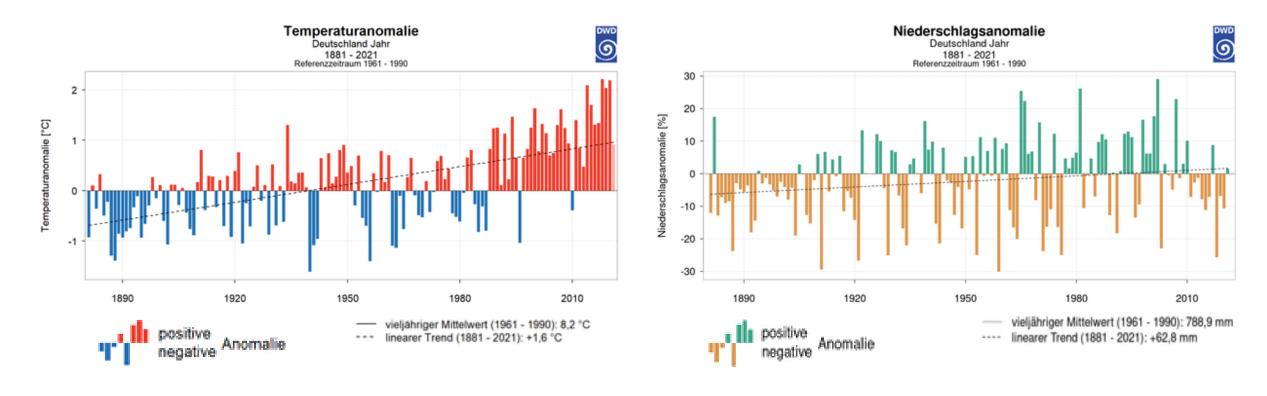
Anstieg der Temperaturen:

- Wärmere Sommer
- Wärme/milde Winter
- Verlängerte Vegetationsperiode

veränderte Niederschlagsverteilung:

- Trockenere Sommer
- Feuchtere Winter

Häufiger Witterungsextreme


- Dürren
- Starkregen
- Stürme


Quelle: verändert nach Spellmann 2019

Klimawandel – Witterungsanomalien

https://www.dwd.de/DE/klimaumwelt/aktuelle_meldungen/220105/abb_1.png;jsessionid=EC2D4E511A55BB31AB4ACF80F449F73E.live11042?_blob=normal&v=2, Klimatologische Einordnung des Jahres 2021 Autoren: F. Imbery, K. Friedrich, F. Kaspar, R. Fleckenstein, K. Lengfeld, P. Bissolli, J. Daßler (Stand 4.1.2022)

Aktuelle pilzliche/ komplexe Erkrankungen in Nordwestdeutschland 2018-2022

Treiber: Klima und Witterung

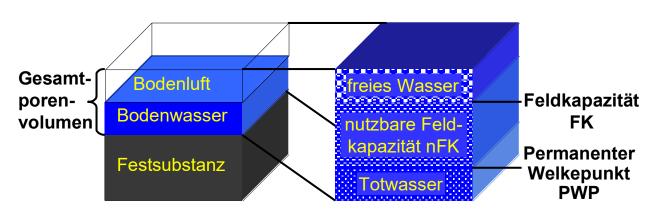
- Buchen-Vitalitätsschwäche Neonectria coccinea, Botryosphaeria/Diplodia spp.
- Diplodia-Triebsterben
 Diplodia sapinea
- Carpinus betulus-Sterben Anthostoma decipiens
- Melanconium-Birken
 Triebsterben Melanconis sp.
- Tannen-Rindennekrose
 Neonectria neomacrospora

- Rußrindenkrankheit des Ahorns
 Cryptostroma corticale
- Rußige
 Douglasienschütte
 Nothophaeocryptopus
 gaeumannii
- Diplodia corticola-Krebs an Eiche

Treiber: Globaler Handel u. invasive o. fremde Arten

Eschentriebsterben *Hymenoscyphus fraxineus*

Seit mind. 2002 in D etabliert



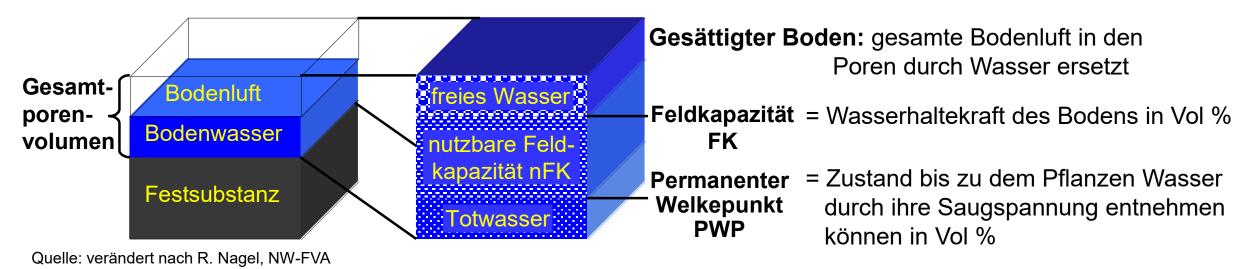
3. Klima – Witterung als auslösende Faktoren für Erkrankungen

- Klimawandel
- Witterungsverlauf
- Temperaturen
- Niederschläge
- Sonneneinstrahlung
- Extreme Witterungsereignisse: Sturm, Dürre, Starkregen, Hagel, Spätfrost ...

- Menge des pflanzenverfügbaren Wassers:
- Klimatische Wasserbilanz (KBW) = Niederschlag Verdunstung
- Bodenwasser => Nutzbare Feldkapazität (nFK)

Standortwasserbilanz = Klimatische Wasserbilanz + Nutzbare Feldkapazität

Quelle: verändert nach R. Nagel, NW-FVA


Menge des pflanzenverfügbaren Wassers:

- Klimatische Wasserbilanz (KBW) = Niederschlag Verdunstung
- Bodenwasser => Nutzbare Feldkapazität (nFK)

Pflanze kann nur Wasser zwischen den Zuständen Welkepunkt (WP) und Feldkapazität (FK) nutzen = 100 % nutzbare Feldkapazität (nFK), nFK = FK – WP

die aktuelle Bodenfeuchte wird in %nFK ausgedrückt, WG = momentane Wassergehalt:

(WG - WP) %nFK = -----nFK

Bedeutung der nutzbaren Feldkapazität

- momentane Wassergehalt > Feldkapazität,
 => nFK Werte >100%
 (bis 300% bei leichten Böden möglich)
- Pflanzenarten haben unterschiedliche Saufkraft
- Pflanzenarten haben unterschiedliche Toleranzen in Bezug auf die Standortwasserbilanz

%nFK	Pflanzenentwicklung
< 30	die Pflanze steht unter Wasserstress
30 - 50	noch ausreichende Wasserversorgung der Pflanzen
> 50 - 100	optimales Wasserangebot
> 100	Wasserüberversorgung und Sauerstoffmangel

Standortwasserbilanz = Klimatische Wasserbilanz + Nutzbare Feldkapazität

Trockenstressgefährdung der Hauptbaumarten

Risikoklassifizierung im Anhalt an die Standortswasserbilanz

- klimatische Wasserbilanz in der Vegetationsperiode (Grasreferenz) und nutzbare Feldkapazität (nFK) -

Trocken- stressrisiko	Fichte	Buche	Eiche/ Douglasie	Kiefer	
gering	> 0 mm	> -50 mm	> -150 mm	> -200 mm	
mittel	0 bis -80 mm	-50 bis -100 mm	-150 bis -350 mm	-200 bis -450 mm	
hoch	< -80 mm	< -100 mm	< -350 mm	< -450 mm	

- Roterle
- Moorbirke
- Weißtanne
- Japanlärche
- Bergulme
- Schwarznuss

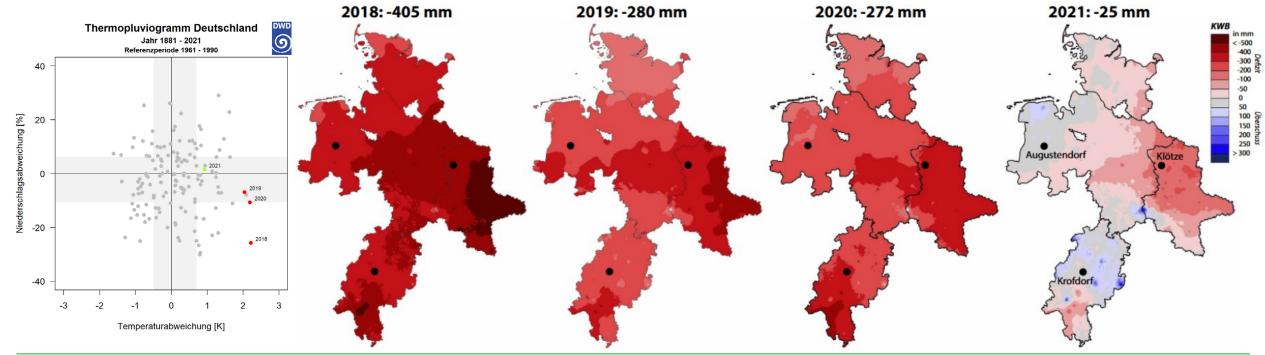
- Roteiche
- Ahornarten
- Esche
- Hainbuche
- Linde
- Europ. Lärche
- Küstentanne

- Sandbirke
- Schwarzkiefer

Böckmann et al. 2019, Klimaangepasste Baumartenwahl, Aus dem Walde 61

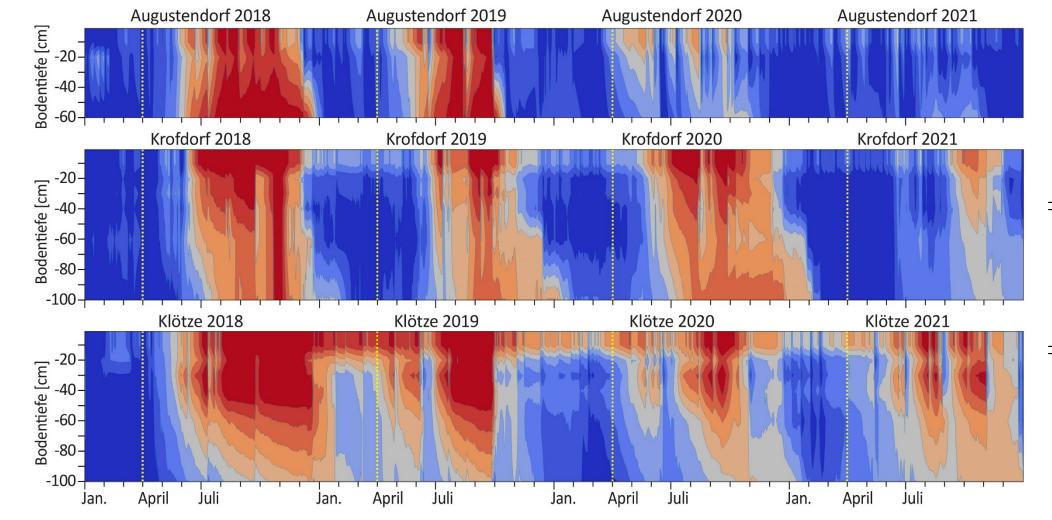
2018-2022 Trockenstress für Rotbuchen durch Hitze und Dürre

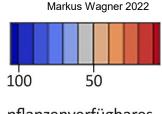
Trockenstress- risiko	Buche Standortwasserbilanz
gering	> -50 mm
mittel	-50 bis -100 mm
hoch	< -100 mm


Klimatische Wasserbilanz von April bis August (KWB) in Nordwestdeutschland

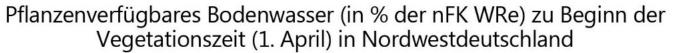
Mittelwert über alle Trägerländer der NW-FVA (1961-1990): **-80 mm**

14

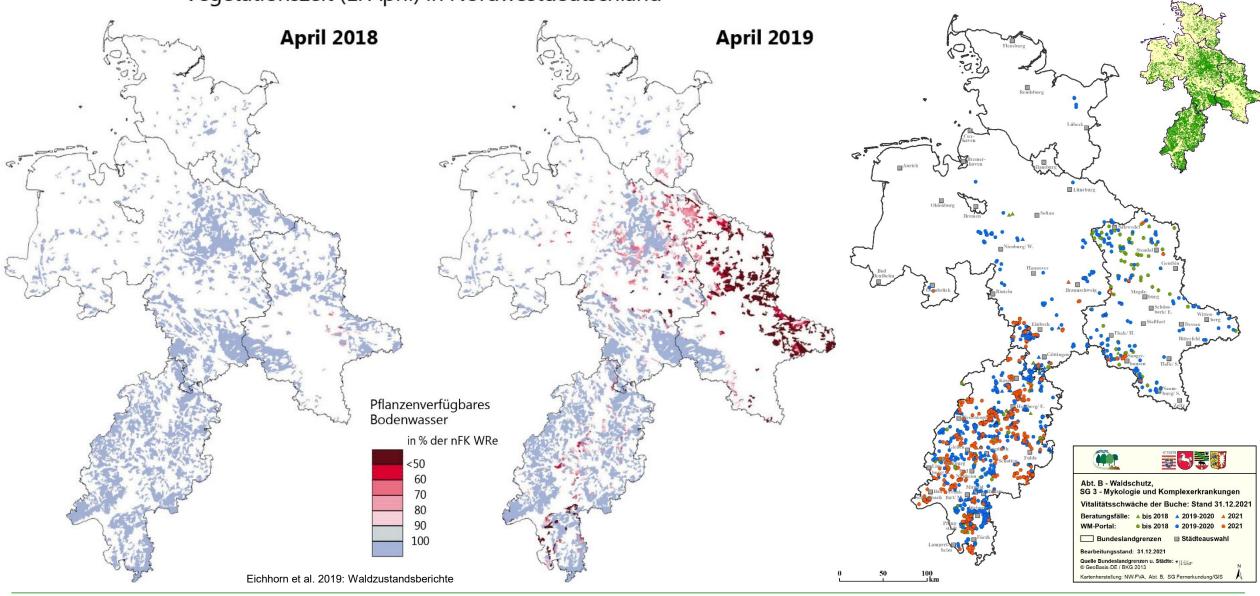

Quelle: Eichhorn et al. 2019: Waldzustandsberichte, Johannes Sutmöller 2022


Quelle: verändert nach R. Nagel, NW-FVA

Gemessene Bodenfeuchte (% nFK) an drei Waldstandorten der NW-FVA (2018 – 2021) Augustendorf (Ni), Krofdorf (Rotbuche, HE) und Klötze (ST)



Quelle: Johannes Sutmöller.


pflanzenverfügbares Bodenwasser [% nFK]

- ⇒ Die Trockenheit setzte sich im Jahr 2022 unvermindert fort.
- ⇒ Massive Schäden in den Wäldern sind zu beobachten und weiterhin zu befürchten.

Buchen-Vitalitätsschwäche

4. Buchen-Vitalitätsschwäche – Absterbeerscheinungen ab Herbst 2018

- Vorzeitiger Blattfall
- Frühzeitiges Verbraunen und Absterben des Laubes in der Krone
- Feinreisigverlust
- Rindenrisse
- Schleimflussflecken, Rindennekrosen
- Abblätternde Rinde
- Bildung Pilzfruchtkörpern auf, in und unter der Rinde
- Teilweise kein Austrieb 2019 2022
- Absterben von Kronenästen
- Absterben von Stammbereichen und Bäumen
- Massive Holzverfärbungen
- Sekundärer Befall mit u. a. Pracht- und Borkenkäfern

Sekundärer Befall mit rinden (holz)brütenden Käfern

- Buchenprachtkäfer (Agrilus viridis)
- Kleinen Buchenborkenkäfers (Taphrorychus bicolor)

Begleitender Befall durch den

- Sägehörnigen Werftkäfer (Hylecoetus dermestoides)
- Laubnutzholzborkenkäfer (Xyloterus domesticus)
- Schwarzen Nutzholzborkenkäfer (Xylosandrus germanus),
- Gekörnten Nutzholzborkenkäfer (Xyleborus dryographus)

Geschwungene Larvengänge des Buchenprachtkäfers

Sägehörniger Werftkäfer (*Hylecoetus dermestoides*)

Komplexe Erkrankungen der Rotbuche (Fagus sylvatica)

Buchener- krankungen	Buchen-Vitalitätsschwäche	Buchenrindennekrose Buchenkomplexerkrankung	Phytophthora an Buche
Kurzbeschreibung	Signifikante Reduktion der Vitalität erkennbar durch schüttere Belaubung und Absterbeerscheinungen in der Oberkrone → Rindenpilze → nachfolgend Holzfäulepilze, Befall mit Insekten, meist Ast-/ Stammbruch und schnelle Holzentwertung	Buchenrindennekrose mit Buchenwollschildlaus und Neonectria coccinea am Stamm, nachf. Weiß-, Braun- u. Moderfäule, Befall mit Insekten, meist Stammbruch und sehr schnelle Holzentwertung	Schleimfluss am Stammfuß durch z. B. <i>Phytophthora cambivora;</i> langsames Zurücksterben der Krone und ggf. Absterben des Baumes. Befall mit pilzlichen Folgeschaderregern und Insekten.
Prädisponierende Faktoren	Abiotisch (Exposition) • Südexponierte Lage und starke Exposition zum Sonnenlicht • Starke Freistellung des Einzelbaums • Bestandesauflichtungen	Abiotisch (Klima) • höhere Lagen in atlantisch geprägten Klimabereichen des natürlichen Verbreitungsgebietes der Buche • ggf. extreme Witterungsereignisse	Abiotisch (Boden) • basenreiche, lehmige, frische bis stau- oder wechselfeuchte Standorte, deren Böden einen hohen pH-Wert, hohen Tongehalt und gute Wasserversorgung haben.
Auslösende Faktoren	Abiotisch: Häufung der Witterungsextreme Hitze und Trockenheit → Wassermangel → Neonectria, Rindenpilze	Biotisch: Massenbefall mit der Buchenwollschildlaus und nach- folgender Befall mit <i>Neonectria</i>	Biotisch: Infektion mit z. B. Phytophthora cambivora im Wurzel- und Stammfußbereich

NW-FVA
Nordwestdeutsche
Forstliche Versuchsanstalt

Rotbuchen-Vitalitätsschwäche

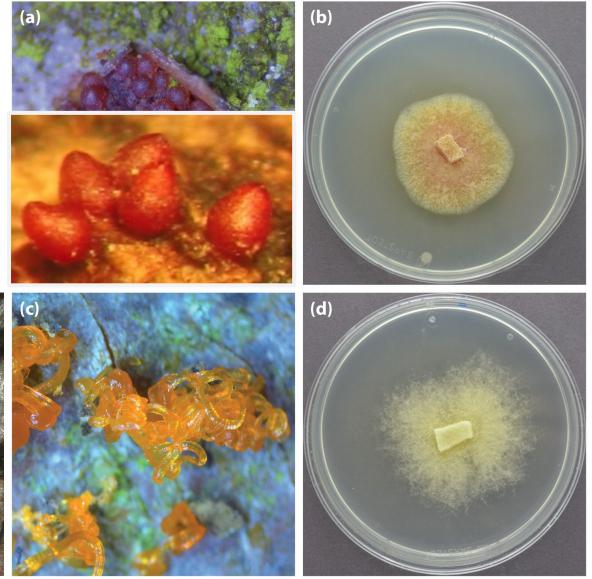
Signifikante Reduktion der Buchenvitalität, die wahrscheinlich durch eine Häufung von Witterungsextremen, insbesondere Trockenheit, in Verbindung mit Auflichtung bzw. starker Freistellung der einzelnen Buchen ausgelöst wird.

Assoziierte latente pilzliche Pathogene

Pilzliches Schlüsselpathogen

vergangener Erkrankungsausbrüche:

Neonectria coccinea,


Nebenfruchtform: Cylindrocarpon candidum

oft begleitet von *Eutypella quaternata*

Nebenfruchtform: *Libertella faginea*

Eutypella quaternata, Hauptfruchtform

a-b: Neonectria coccinea, c-d) Eutypella quaternata (Libertella faginea)

Assoziierte latente pilzliche Pathogene

«Sonnenbrandpilze»:

Schizophyllum commune (Spaltblättling)

Pleurotus ostreatus (Austernseitling)

Im fortschreitenden Schadensverlauf

Biscogniauxia nummularia (Münzenförmiger Rindenkugelpilz)

Bjerkandera adusta (Angebrannter Rauchporling)

Fomitopsis pinicola (Rotrandiger Raumporling)

Fomes fomentarius (Zunderschwamm)

Armillaria spp. (Hallimasch)



Hallimasch

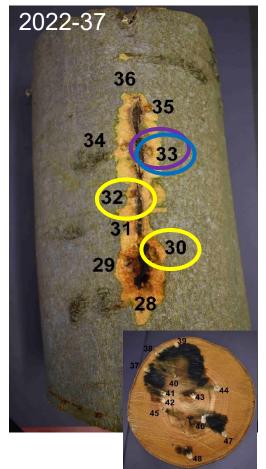
Schleimflussflecken – Schaderreger

- Neonectria coccinea
- Diplodia mutila
- Diplodia corticola
- Diplodia sapinea
- Botryosphaeria dothidea
- Eutypella quaternata (Libertella faginea)

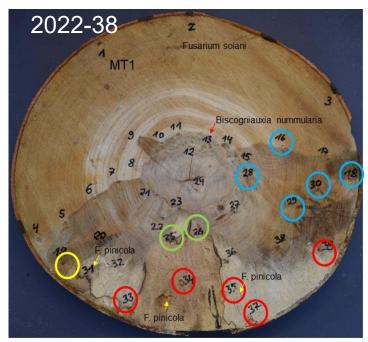
55 untersuchte Schadensfälle (Einzelbäume/Bestände, 2018 - 2019)

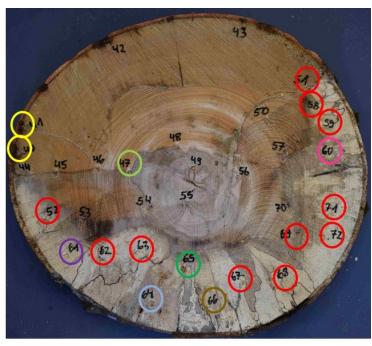
Isolation / Identifikation von 31 pilzlichen
 Pathogenen (Asco- und Basidiomycota), die eine
 Frequenz ≥ 2 % hatten:

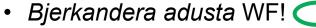
Endophyten, latente Pathogene, Rindenpilze, Holzfäulepilze und Folgezersetzer


- Neonectria coccinea, Eutypella quaternata, und Biscogniauxia nummularia kamen am häufigsten vor
- Einige latente Pathogen wurden zum ersten Mal im Zusammenhang mit Buchenvitalitätsschwäche isoliert:

Botryosphaeria dothidea, Diplodia corticola*, D. mutila, D. sapinea


	Art	Systematik	Häufigke it (%)	
•	Neonectria coccinea (Cylindrocarpon candidum)	A, Nectriaceae	51	Latentes Pathogen
	Eutypella quaternata (Libertella faginea)	A, Diatrypaceae	42	Latentes Pathogen
	Biscogniauxia nummularia	A, Graphostromataceae	33	Latentes Pathogen
	<i>Armillaria</i> spp. e.g. <i>A. gallica</i>	B, Physalacriaceae	27	Parasit u. Holzfäulepilz
	Botryosphaeria stevensii (Diplodia mutila)	A, Botryosphaeriaceae	20	Latentes Pathogen
	Hypoxylon fragiforme	A, Hypoxylaceae	15	Latentes Pathogen u. Holzfäulepilz
	Schizophyllum commune	B, Schizophyllaceae	9	Schwächepathogen u. Holzfäulepilz, typisch nach Sonnenbrand
	Asterosporium asterospermum	A, Incertae sedis	7	Endophyt u. Folgezersetzer
	Botryosphaeria dothidea (Fusicoccum aesculi)	A, Botryosphaeriaceae	7	Latentes Pathogen
	Biscogniauxia mediterranea	A, Xylariaceae	5	Latentes Pathogen u. Holzfäulepilz
	Kretzschmaria deusta	A, Xylariaceae	5	Parasit u. Holzfäulepilz




^{*} Erstnachweis für Deutschland

Fomes fomentarius WF!

Fomitopsis pinicola BF!

Sarcomyxa serotina WF!

Sistotrema brinkmannii WF!



Biscogniauxia nummularia MF!

Ascocoryne sarcoides MF!

Jackrogersella cohaerens MF!

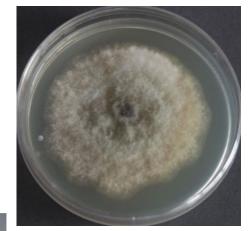
Fusarium solani

Trichoderma cf. minutisporum

Diplodia mutila (fraxini)

• Fusarium sp. (F. latericium Gr.)

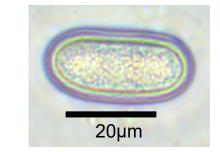
• Eutypella quaternata MF!



Diplodia mutila / Botryosphaeria stevensii Erreger von Rindenbrand, Rindennekrosen, Zopftrocknis und Zweigsterben

- Triebsterben und Rindennekrosen an vorgeschädigten Rotbuchen in Sachsen (LFE 2016)
- Zopftrocknis und Zweigsterben bei Eichenarten (Quercus petrea und Q. suber) in wärmeren Ländern (Butin 2011, Ragazzi et al. 2000)
- Kleiner Rindennekrosen bei unterschiedlichen Baumarten (Ulme und Esche) in Mitteleuropa (Kehr und Wulf 1993)
- Rindenbrand bei Apfel (Hessen, HMUELV 2011
- Schwarzer Rindenbrand / Krebs an Obstbäumen (Martinez 2010)
- Triebsterben bei Liguster (Kuch et al. 2014)
- Erreger von Krebswucherungen und Triebsterben an Gehölzen (Kuch et al. 2014)
- Black dead arm disease of grapevines (Lehoczky 1974)

Diplodia corticola an Rotbuche



2019 erster Nachweis an Rotbuche weltweit 2019 erster Nachweis in Deutschland (an Fagus sylvatica u. Quercus sp.)

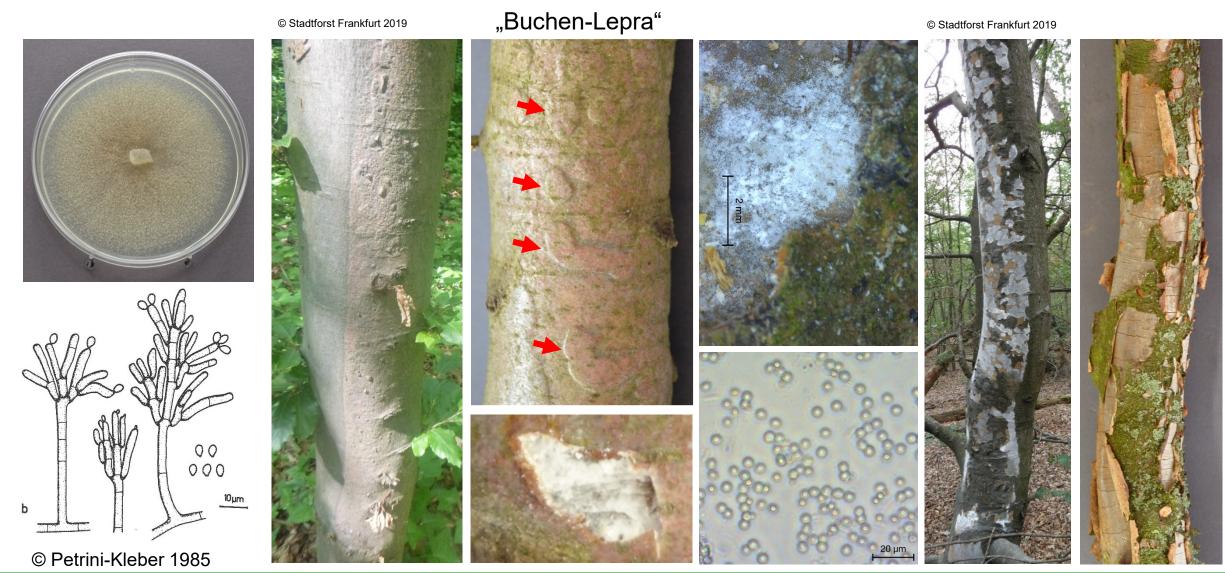
- Schleimflussflecken
- Nekrosen
- Rindenbrand

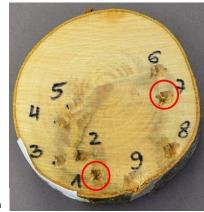
Biscogniauxia nummularia

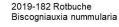
- Münzenförmiger Rindenkugelpilz, Pfennig-Kohlenbeere oder auch Rotbuchen-Rindenkugelpilz
- Graphostromataceae, Xylariales, Ascomycota, Fungi
- heimisch in allen Regionen Europas mit Rotbuchenwäldern
- wärmeliebend
- Endophytisch, schwäche-parasitisch und saprophytisch
- natürlicher "Astreinigungspilz"

Wirtspflanzen: *Fagus sylvatica*, *Fagus orientalis*, sowie nachgewiesen als Endophyt in Holz und Trieben von z. B. *Pinus sylvestris*, *Pseudotsuga menziesii* und *Abies grandis*,

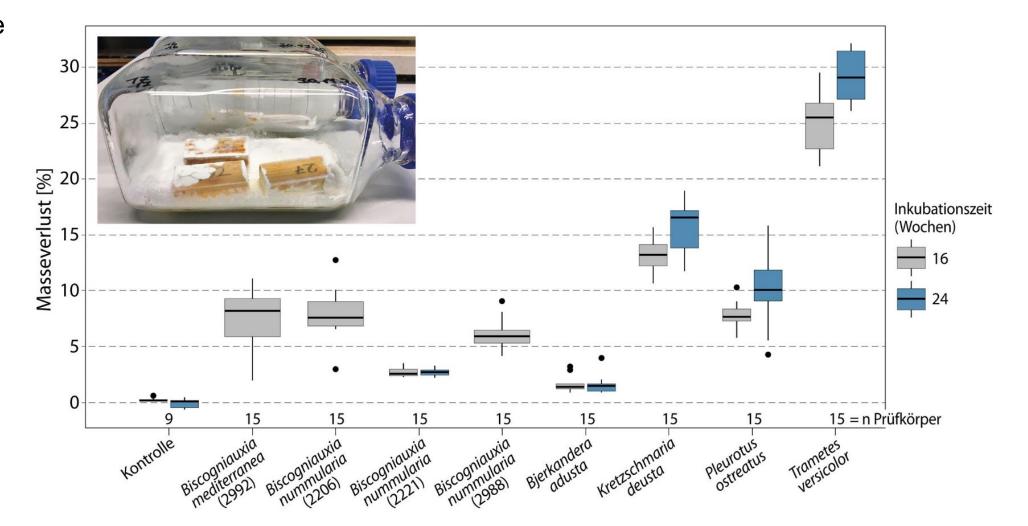
Verwandte Art: Südliche Kohlenbeere (B. mediterranea)




Biscogniauxia nummularia: Periconiella-ähnliche Nebenfruchtform


Biscogniauxia nummularia

- Moderfäule
- Sprödbruch, Grünholzbruch
- Streifenartiger Krebs (strip canker)
- "Buchen-Lepra"



Biscogniauxia nummularia

Moderfäule

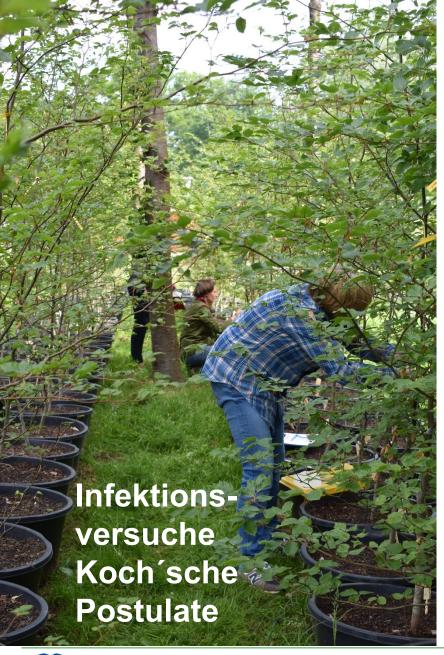
Tropf et al. (2022): Forschungen zu pilzlichen Schäden an der Rotbuche, AFZderWald 2022(20). akzeptiert.

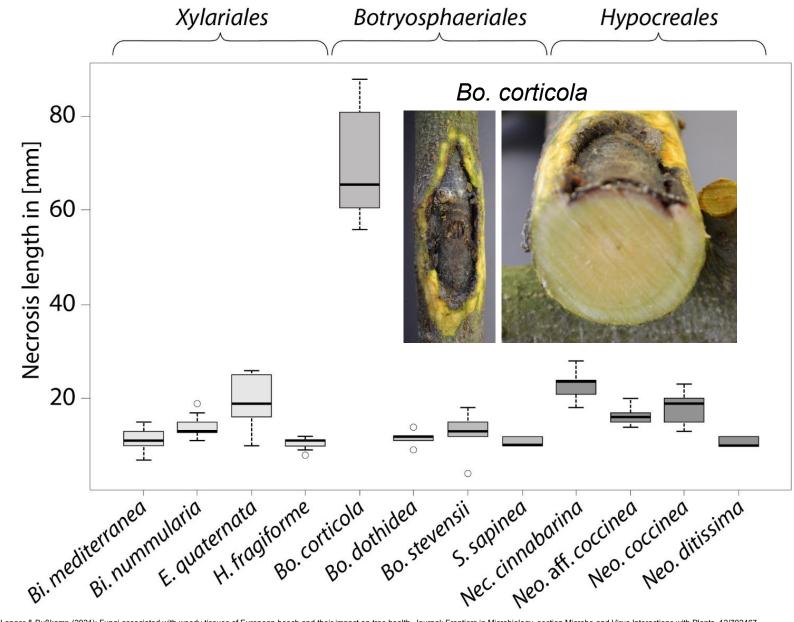
Pathogenitätstests in planta

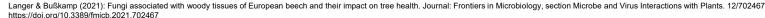
Inokulation in Buchenheister (NV)

Laufzeit: 4 Monate

Vegetationsperiode 2020 (getopft im Freiland)


Natürliche Lufttemperatur (Tmean 17 °C, Tmin. 4 °C and Tmax. 35 °C; gute Wasserversorgung durch regelmäßige Bewässerung und Beschattung durch umgebende Bäume


Teststämme: 12, Botryosphaeria dothidea (5287), Diplodia stevensii (4915), D. corticola (4897), D. sapinea (4932), Eutypella quaternata (5333), Neonectria coccinea (5096), N. aff. coccinea (0179), N. ditissima (5322), Nectria cinnabarina (1249), Hypoxylon fragiforme (5174), Biscogniauxia nummularia (5282), B. mediterranea (5283)


Plug-Inokulation von je 10 Zweige/Heisterstämmen pro Teststamm Mock control: 10 Zweige/Heisterstämme inokuliert mit einem sterilen Agarplug, Control: 10 Zweige/Heister unbehandelt

Ergebnisse der Pathogenitätstests 2020

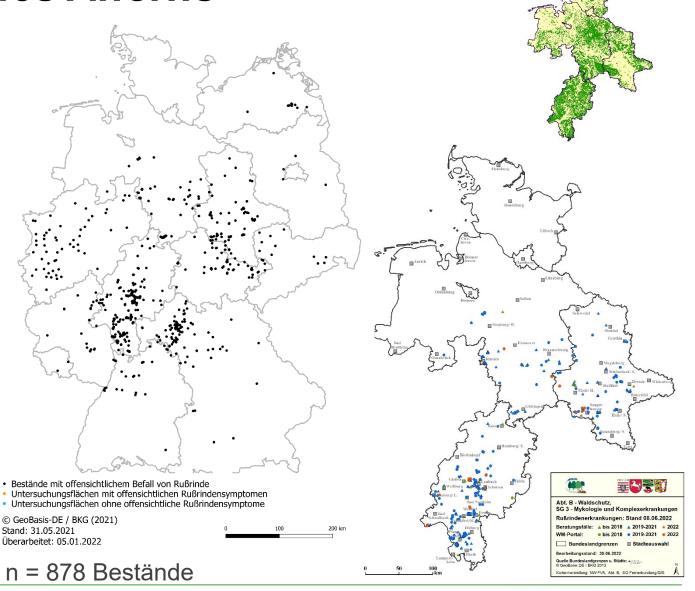
- 4 Monate nach Inokulation bei Tmean 17 °C verursachte Diplodia corticola die längsten Läsionen/Nekrosen (68 mm) ohne Kallusbildung, gefolgt von Nectria cinnabarina (23 mm), Eutypella quaternata (19.3 mm), Neonectria coccinea (17.9 mm), N. aff. coccinea (16.4 mm), Biscogniauxia nummularia (13.9 mm), Diplodia stevensii (12.8 mm)....
- Nach Abschluss der Pathogenitätstests, waren alle untersuchten Heister noch am Leben, zeigten jedoch unterschiedliche Reaktionen auf die verschiedenen Schaderreger/ Behandlungen
- Die unbehandelten Kontrollen wiesen keine Läsionen auf und das holzige Gewebe im Stammbereich war gesund
- Die Mock Kontrollen zeigten keine Läsionen und die Inokulationsloci waren verheilt und mit Calli überwachsen
- Alle inokulierten pilzpatogene induzierten nekrotitische Läsionen mit oder ohne Callusbildung bzw. T-Fehlern (T-shaped discolorations)
- Abgesehen von Neonectria ditissima, wurden alle Teststämme re-isoliert (Koch's Postulate)

5. Rußrindenerkrankung des Ahorns

Trockenstress- risiko	Ahorn-Arten Standortwasserbilanz	
gering	> -150 mm	
mittel	-150 bis -350 mm	
hoch	< -350 mm	

Quelle: verändert nach R. Nagel, NW-FVA

Kartierung:

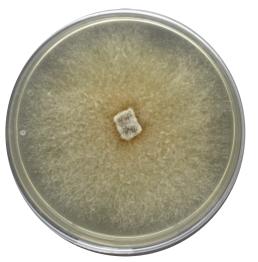

seit 2014 in den NW-FVA Trägerländern

Aktuelles Drittmittelprojekt:

Rußrindenerkrankung in hessischen Wäldern als Folge der Klimaerwärmung (RuRi Hessen; 2020 - 2022)

Wiss. Mitarbeit: Dr. S. Bien, R. Schlößer

Techn. Mitarbeit: A. Ihlemann

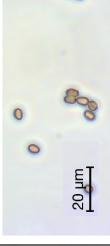

Rußrindenkrankheit des Ahorns

Erreger: Cryptostroma corticale,

- → invasiver Schlauchpilz aus Nordamerika, Schwächeparasit
- Anamorpher Ascomycet aus der Verwandtschaft der Xylariales (Holzkeulenartige; keine Hauptfruchtform bekannt, nur eine Nebenfruchtform mit Konidien)
- Nächste Verwandte:
 z.B. Biscogniauxia-Arten,
 Graphostromataceae =>
 Holzfäulepilz, Moderfäule mit viel Ligninabbau
- Wärmeliebend, endophytisch, parasitisch bis saprobiontisch
- Vorschädigung / Schwächung der Bäume durch Trockenheit und Hitze
- Wirtspflanzen: hauptsächlich Ahorn (Acer)

Rußrindenkrankheit des Ahorns

- Erkrankung bei den befallen Bäumen ist nicht ausheilbar und führt zum letztlich bei für den Erreger günstigen Umweltbedingungen - zum Absterben
- Potentielle Gesundheitsgefahr für den Menschen
- erhöhte Verkehrssicherungspflicht in entsprechenden Bereichen: Standsicherheit der befallenen Bäume durch mögliche, nachfolgende Holzfäulepilze beeinträchtigt
- → Fällung der Bäume empfohlen
- Entnahme: Einzelfallentscheidung



Rußrindenkrankheit - Erkrankungsbild

- 1-mehrjähriger Absterbeprozess
- Absterbe- und Welkeerscheinungen im Kronenbereich
- Rinden- und Kambiumnekrosen;
 Schleimflussflecken
- Bräun- bis grünliche Verfärbungen im Holz
- "Blasenbildung", Aufplatzen und Abblättern der Rinde
- schwarze, rußartige Sporenlager, durch die abplatzenden Rindenschichten werden Massen dunkelschwarz-brauner Konidien (4–6 x 3,5–4 µm) freigesetzt

Cryptostroma corticale - Handlungsempfehlungen

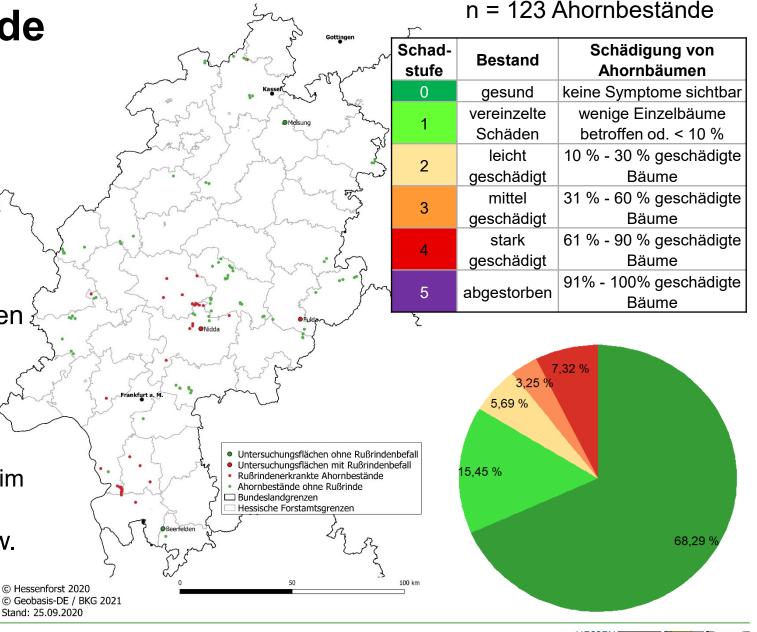
- Entnahme: Einzelfallentscheidung, da Tilgungs- und Eindämmungsmaßnahmen aus phytosanitärer u. aus Waldschutz Sicht nicht sinnvoll (Julius Kühn-Instituts)
- Sofern die von der Sozialversicherung für Landwirtschaft, Forsten und Gartenbau (SVLFG) herausgegebenen Schutzmaßnahmen und Verhaltensregeln beim Arbeiten mit befallenen Material eingehalten werden, ist das Gesundheitsrisiko als getilgt zu betrachten
- Ein Absperren zum Schutz von Passanten, das großräumiger ist, als dies bei Fällarbeiten im Wald im Rahmen der Verkehrssicherungspflicht ohnehin zwingend ist, sei nicht erforderlich.
- Luftgebundene Sporenpotential wird als waldtypische Gefahr betrachtet
- Betroffenes Holz kein Sondermüll in Hessen, darf nicht als Brennholz verkauft werden
- Berufsgenossenschaften: bei Fällungsarbeiten sind Atemmasken (FFP2/3 mit Atemventil) zu tragen. Bevorzugt sollte der Einschlag maschinell erfolgen und bei feuchtem Wetter durchgeführt werden. Gefällte Bäume sollten abgedeckt transportiert und vernichtet werden. Diesbezüglich stellt die SVLFG eine Musterbetriebsanweisung zur Verfügung.

Einatmen der Sporen kann allergische Reaktionen hervorrufen (Maple bark stripper's disease, eine Hypersensitivitätspneumonie, nicht infektiös für den Menschen, keine Lungenentzündung s.str.!!)

Siehe Waldschutzinfo der NW-FVA und deren Ergänzung:

https://www.nwfva.de/index.php?id=215

Waldschutz-Info Nr. 10 / 2018
"Rußrindenkrankheit an Ahorn
(Cryptostroma corticale)" (23.
November)


Kartierung der Rußrinde in Hessen

Kartierungszeitraum
 01.05.2020 bis 01.10.2020

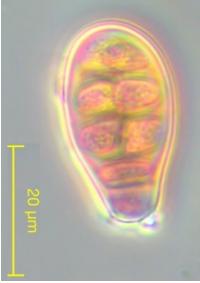
123 Bestände kartiert

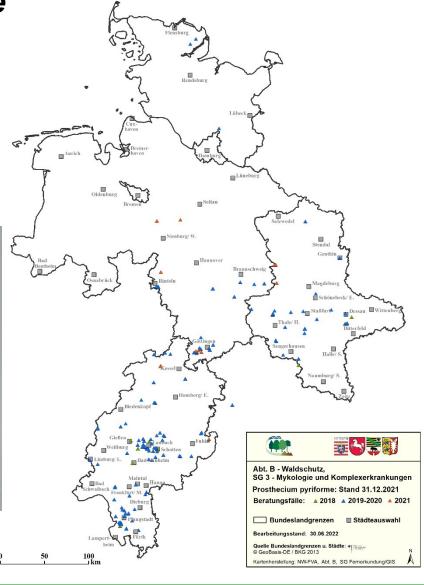
 bei 32 % der Bestände wurden Konidienlager der Rußrinde gefunden (39 Bestände)

Untersuchung von 87 vorausgewählten Beständen
 (20-100-jährig, mit Ahorn als Hauptbaumart in der führenden Schicht im hessischen Staatswald) sowie Befallsstandorten, die im WSMP bzw. im SGB B3 erfasst wurden)

Stegonsporium pyriforme T: Prosthecium pyriforme

Schlauchpilz, Melanconidaceae, Diaporthales, Schwächeparasit


→ Stegonsporium-Triebsterben

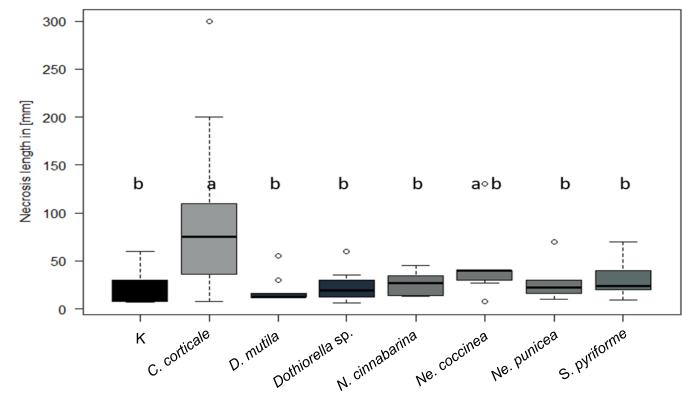

- Ahorntriebsterben meist bei jüngeren Bäumen
- Schwarze Konidienlager auf der Rinde

Pathogenitätstests in planta

Inokulation in Bergahorn-Heisterstämme (NV, ca. 10 jährig symptomlos) Sommer 2020

Laufzeit: 3 Wochen, im Gewächshaus

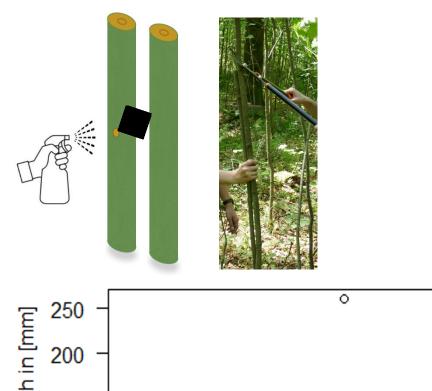
7 Teststämme: Cryptostroma corticale, Diplodia mutila, Dothiorella sp., Nectria cinnabarina, Neonectria coccinea, Neonectria punicea, Stegonsporium pyriforme

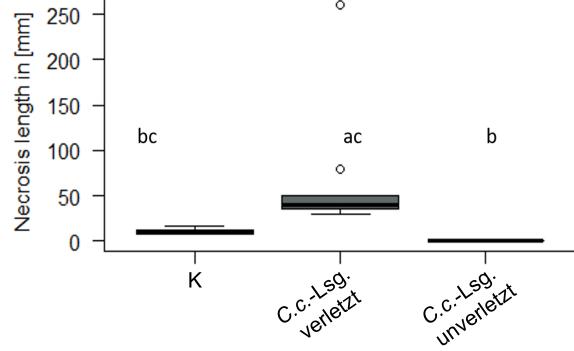

Plug-Inokulation von je 10 Heisterstämmen pro Teststamm Mock Kontrolle (K): 10 Zweige/Heisterstämme inokuliert mit einem sterilen Agarplug,

Nekrosen verursacht durch C. corticale

Pathogenitätstests in planta

Sprüh-Inokulation in Bergahorn-Heisterstämme (NV)


Laufzeit: 3 Wochen, im Gewächshaus


Teststamm: Cryptostroma corticale,

Sprühapplikation mit 8,24 × 108 Konidien pro ml 1% Tween-Lösung durch zwei Pumpstöße mit einer Sprühflasche gegen

- 10 Bäume mit Rindenverletzung (Korkbohrer 5 × 5 mm)
- 10 Bäume unverletzt

Nekrosenvermessung und Re-Isolation

Bergahorn - Aktuell starke Vitalitätsverluste

- Vorzeitiger Blattfall durch Wassermangel, hohe Sonneneinstrahlung und Hitze
- Fortschreiten des Schadensverlaufs bei der Rußrindenerkrankung
- Flächen bei denen
 C. corticale bisher nur
 endophytisch
 (bis 2021) vorkam
 weisen jetzt
 Sporenlager auf

31.08.2022, FA Nidda, Bergahorn

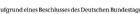
6. Fazit und Ausblick

- Devitalisierung einzelner Bäume bzw. ganzer Bestände durch Globalisierung und Einfluss von Hitze und Dürre
- Vermehrtes Auftreten von pilzlichen und komplexen, mehrjährigen Erkrankungen
- Auftreten neuartiger Schaderreger und Erkrankungen (invasive, latente, kryptische o. endophytische Arten)
- Latente pilzliche Pathogene der Rotbuche wie N. coccinea, B. nummularia, Botryosphaeria dothidea, Diplodia corticola, D. mutila und Eutypella quaternata bzw. C. corticale bei Ahorn reagieren sensibel auf durch klimatischen Stress verursachte Veränderungen der Wirtsphysiologie und stellen in Zukunft eine ernstzunehmende Gefahr für die Rotbuche bzw. Ahorn im Zeichen des Klimawandels dar.
 - Absterbender Buchenaltbestand in Hessen verursacht durch Buchen-Vitalitätsschwäche assoziiert u. a. mit N. coccinea, D. *mutila* u. *Armillaria* sp.
- Absterben betroffener Bäume und deren Holzentwertung durch Holzfäulepilze
- Negativer Einfluss auf die Produktivität der Bestände
- Verminderung der Arbeitssicherheit und Verkehrssicherheit in betroffenen Beständen
- Mehraufwand beim forstlichen Management der Wälder

Herzlichen Dank für Ihre Aufmerksamkeit

Ebenso herzlichen Dank für die Zusammenarbeit und Bereitstellung von Teilergebnissen an die KollegInnen der NW-FVA insbesondere Prof. Dr. H. Spellmann, Prof. Dr. J. Eichhorn, R. Nagel J. Sutmöller und Dres. M. Wagner, J. Bußkamp und S. Bien.

Für die technische Unterstützung sei dem TEAM SG B3, D. Büttner und E. Starick gedankt.


Herzlichen Dank auch an Herrn Prof. Dr. E. Langer, Fachgebiet Ökologie, Universität Kassel und sein Team.

Für die vertrauensvolle und konstruktive Zusammenarbeit sei insbesondere den forstlichen Betrieben und Waldbesitzern in den 4 Trägerländer der NW-FVA gedankt.

Gefördert durch: HMUKLV und

